DOWNLOAD PDF

Transformative Potential of Thermal Storage Applications in Advancing Energy Efficiency and Sustainability

Val Hyginus Udoka Eze1,*, Oonyu Robert1, Nakitto Immaculate Sarah1, John S. Tamball1, Oparaocha Favour Uzoma1, Okafor O. Wisdom2

1Department of Electrical, Telecommunication and Computer Engineering, Kampala International University, Uganda.

2Department of Computer Science and Technology, University of Bedfordshire, Luton, England.

*Corresponding Author: Val Hyginus Udoka Eze, ezehyginusudoka@gmail.com, Kampala International University, Western Campus, Ishaka, Uganda (ORCID: 0000-0002-6764-1721)

ABSTRACT

This article highlights the instrumental role of thermal storage applications in addressing contemporary challenges related to energy efficiency and sustainability. The scope of these applications encompasses a diverse range of innovative solutions dedicated to capturing, storing, and effectively utilizing thermal energy. Notably, thermal storage systems emerge as crucial contributors to curbing energy consumption and mitigating greenhouse gas emissions, especially in critical sectors like heating, cooling, and industrial processes. A key revelation is the ongoing focus on materials such as phase change materials (PCMs) and sensible heat storage mediums. These materials, actively applied in research and practical scenarios, contribute to enhancing thermal storage capacity and efficiency, marking a significant advancement in the field. The exploration of diverse applications spans from leveraging thermal storage for solar energy in residential and commercial buildings to the implementation of district heating systems. Beyond improving energy resilience, these applications play a vital role in reducing peak demand on power grids. An intriguing aspect of the research emphasizes the synergy achieved by integrating thermal storage technologies with renewable energy sources like wind and solar power. This integration holds immense promise for establishing a more sustainable and reliable energy supply. In essence, the findings underscore the transformative potential of thermal storage applications, portraying them as pivotal contributors to steering the transition toward a more sustainable and energy-efficient future.

Keywords: Renewable Energy Storage, Thermal Energy Storage, Peak Demand Management, Sustainable Energy Solutions Climate Change, Energy Consumption

INTRODUCTION

In an era marked by burgeoning energy demands and a pressing need for sustainable solutions, the field of thermal storage applications has emerged as a pivotal player in reshaping the landscape of energy management [1][2][3]. As societies strive to strike a delicate balance between economic growth and environmental stewardship, the ability to harness and store thermal energy efficiently has become a linchpin for achieving a sustainable and resilient future. Thermal storage is the science and art of capturing and preserving heat energy for later use, presenting an ingenious solution to the intermittent nature of many renewable energy sources and the daily fluctuations in energy demand. This dynamic and multidisciplinary field has witnessed remarkable advancements, offering a diverse array of applications that span industrial, residential, and commercial domains. From optimizing energy consumption in smart buildings to bolstering the reliability of renewable energy systems, thermal storage technologies are poised to revolutionize the way energy is being generated, distributed, and utilized [4][5][6]. This research paper delves into the multifaceted realm of thermal storage applications, exploring the key principles, technological innovations, and transformative impacts that characterize this field. As this research article navigate through the intricate tapestry of thermal storage, it will uncover not only the potential to mitigate climate change by reducing carbon emissions but also the promise of enhanced energy efficiency and affordability.

 CONCLUSION

Thermal storage applications have become instrumental in addressing challenges related to energy efficiency and sustainability. These encompass a broad spectrum of innovative solutions aimed at capturing, storing, and effectively utilizing thermal energy. A noteworthy revelation is the crucial role played by thermal storage systems in curbing energy consumption and mitigating greenhouse gas emissions, particularly in sectors such as heating, cooling, and industrial processes. Significantly, ongoing research and application efforts are focused on materials like phase change materials (PCMs) and sensible heat storage mediums. These materials are being harnessed to augment thermal storage capacity and efficiency, marking a noteworthy advancement in the field. Furthermore, the exploration of diverse applications is evident, spanning from utilizing thermal storage for solar energy in residential and commercial buildings to the implementation of district heating systems. These applications not only enhance energy resilience but also contribute to reducing peak demand on power grids. A compelling revelation lies in the synergy achieved by integrating thermal storage technologies with renewable energy sources, such as wind and solar power. This integration holds immense promise in establishing a more sustainable and reliable energy supply. In essence, these findings underscore the transformative potential of thermal storage applications, playing a pivotal role in steering the transition toward a more sustainable and energy-efficient future.

REFERENCES

  1. Laimon, M., & Yusaf, T. (2024). Towards energy freedom: Exploring sustainable solutions for energy independence and self-sufficiency using integrated renewable energy-driven hydrogen system. Renewable Energy, 119948.
  2. Mishra, P., & Singh, G. (2023). Energy management systems in sustainable smart cities based on the internet of energy: A technical review. Energies16(19), 6903.
  3. Eze, V. H. U., Edozie, E., Umaru, K., Okafor, O. W., Ugwu, C. N., & Ogenyi, F. C. (2023). Overview of Renewable Energy Power Generation and Conversion ( 2015-2023 ). EURASIAN EXPERIMENT JOURNAL OF ENGINEERING (EEJE), 4(1), 105–113.
  4. Zaidan, E., Ghofrani, A., Abulibdeh, A., & Jafari, M. (2022). Accelerating the change to smart societies-a strategic knowledge-based framework for smart energy transition of urban communities. Frontiers in Energy Research10, 852092.
  5. Eze, V. H. U., Edozie, E., Umaru, K., Ugwu, C. N., Okafor, W. O., Ogenyi, C. F., Nafuna, R., Yudaya, N., & Wantimba, J. (2023). A Systematic Review of Renewable Energy Trend. NEWPORT INTERNATIONAL JOURNAL OF ENGINEERING AND PHYSICAL SCIENCES, 3(2), 93–99.
  6. Eze, V. H. U., Edozie, E., Wisdom, O. O., Kalu, C., & Uche, A. (2023). A Comparative Analysis of Renewable Energy Policies and its Impact on Economic Growth : A Review. International Journal of Education, Science, Technology and Engineering, 6(2), 41–46. https://doi.org/10.36079/lamintang.ijeste-0602.555
  7. Tian, Y., & Zhao, C. Y. (2013). A review of solar collectors and thermal energy storage in solar thermal applications. Applied energy104, 538-553.
  8. Eze, M. C., Eze, V. H. U., Chidebelu, N. O., Ugwu, S. A., Odo, J. I., & Odi, J. I. (2017). NOVEL PASSIVE NEGATIVE AND POSITIVE CLAMPER CIRCUITS DESIGN FOR ELECTRONIC SYSTEMS. International Journal of Scientific & Engineering Research, 8(5), 856–867.
  9. Alva, G., Lin, Y., & Fang, G. (2018). An overview of thermal energy storage systems. Energy144, 341-378.
  10. Li, G. (2016). Sensible heat thermal storage energy and exergy performance evaluations. Renewable and Sustainable Energy Reviews53, 897-923.
  11. Eze, V. H. U., Eze, M. C., Chidiebere, C. S., Ibokette, B. O., Ani, M., & Anike, U. P. (2016). Review of the Effects of Standard Deviation on Time and Frequency Response of Gaussian Filter. International Journal of Scientific & Engineering Research, 7(9), 747–751.
  12. Jegadheeswaran, S., & Pohekar, S. D. (2009). Performance enhancement in latent heat thermal storage system: a review. Renewable and Sustainable energy reviews13(9), 2225-2244.
  13. Sharma, S. D., & Sagara, K. (2005). Latent heat storage materials and systems: a review. International journal of green energy2(1), 1-56.
  14. Yau, Y. H., & Rismanchi, B. (2012). A review on cool thermal storage technologies and operating strategies. Renewable and sustainable energy reviews16(1), 787-797.
  15. Davenne, T. R., Garvey, S. D., Cardenas, B., & Simpson, M. C. (2017). The cold store for a pumped thermal energy storage system. Journal of Energy Storage14, 295-310.
  16. Chen, S. L., Chen, C. L., Tin, C. C., Lee, T. S., & Ke, M. C. (2000). An experimental investigation of cold storage in an encapsulated thermal storage tank. Experimental Thermal and Fluid Science23(3-4), 133-144.
  17. Eze, V. H. U., Edozie, E., & Ugwu, C. N. (2023). CAUSES AND PREVENTIVE MEASURES OF FIRE OUTBREAK IN AFRICA: REVIEW. International Journal of Innovative and Applied Research, 11(06), 13–18. https://doi.org/10.58538/IJIAR/2028
  18. Popov, D., Fikiin, K., Stankov, B., Alvarez, G., Youbi-Idrissi, M., Damas, A., … & Brown, T. (2019). Cryogenic heat exchangers for process cooling and renewable energy storage: A review. Applied Thermal Engineering153, 275-290.
  19. Eze, V. H. U., Enerst, E., Turyahabwe, F., Kalyankolo, U., & Wantimba, J. (2023). Design and Implementation of an Industrial Heat Detector and Cooling System Using Raspberry Pi. IDOSR Journal of Scientific Research, 8(2), 105–115.
  20. Eze, V. H. U., Oparaku, U. O., Ugwu, A. S., & Ogbonna, C. C. (2021). A Comprehensive Review on Recent Maximum Power Point Tracking of a Solar Photovoltaic Systems using Intelligent , Non-Intelligent and Hybrid based Techniques. International Journal of Innovative Science and Research Technology, 6(5), 456–474.
  21. Eze, V. H. U., Umaru, K., Edozie, E., Nafuna, R., & Yudaya, N. (2023). The Differences between Single Diode Model and Double Diode Models of a Solar Photovoltaic Cells : Systematic Review. Journal of Engineering, Technology & Applied Science, 5(2), 57–66. https://doi.org/10.36079/lamintang.jetas-0502.541
  22. Uche, C. K. A., Eze, V. H. U., Kisakye, A., Francis, K., & Okafor, W. O. (2023). Design of a Solar Powered Water Supply System for Kagadi Model Primary School in Uganda. Journal of Engineering, Technology & Applied Science, 5(2), 67–78. https://doi.org/10.36079/lamintang.jetas-0502.548
  23. Eze, M. C., Ugwuanyi, G., Li, M., Eze, H. U., Rodriguez, G. M., Evans, A., Rocha, V. G., Li, Z., & Min, G. (2021). Optimum silver contact sputtering parameters for efficient perovskite solar cell fabrication. Solar Energy Materials and Solar Cells, 230(2020),111185. https://doi.org/10.1016/j.solmat.2021.111185
  24. Eze, M. C., Eze, V. H. U., Ugwuanyi, G. N., Alnajideen, M., Atia, A., Olisa, S. C., Rocha, V. G., & Min, G. (2022). Improving the efficiency and stability of in-air fabricated perovskite solar cells using the mixed antisolvent of methyl acetate and chloroform. Organic Electronics, 107, 1–10. https://doi.org/10.1016/j.orgel.2022.106552
  25. Eze, V. H. U. (2023). Development of Stable and Optimized Bandgap Perovskite Materials for Photovoltaic Applications. IDOSR Journal of Computer and Applied Science, 8(1), 44–51.
  26. Eze, V. H. U., Eze, M. C., Chijindu, V., Chidinma E, E., Samuel, U. A., & Chibuzo, O. C. (2022). Development of Improved Maximum Power Point Tracking Algorithm Based on Balancing Particle Swarm Optimization for Renewable Energy Generation. IDOSR Journal of Applied Sciences, 7(1), 12–28.
  27. Eze, V. H. U., Iloanusi, O. N., Eze, M. C., & Osuagwu, C. C. (2017). Maximum power point tracking technique based on optimized adaptive differential conductance. Cogent Engineering, 4(1),1339336. https://doi.org/10.1080/23311916.2017.1339336
  28. Eze, V. H. U., Uche, K. C. A., Okafor, W. O., Edozie, E., Ugwu, C. N., & Ogenyi, F. C. (2023). Renewable Energy Powered Water System in Uganda : A Critical Review. NEWPORT INTERNATIONAL JOURNAL OF SCIENTIFIC AND EXPERIMENTAL SCIENCES (NIJSES), 3(3), 140–147
  29. Eze, V. H. U., Ukagwu, K. J., Ugwu, C. N., Uche, C. K. A., Edozie, E., Okafor, W. O., & Ogenyi, F. C. (2023). Renewable and Rechargeable Powered Air Purifier and Humidifier : A Review. INOSR Scientific Research, 9(3), 56–63.
  30. Eze, V. H. U., Uzoma, O. F., Tamball, J. S., Sarah, N. I., Robert, O., & Wisdom, O. O. (2023). Assessing Energy Policies , Legislation and Socio-Economic Impacts in the Quest for Sustainable Development. International Journal of Education, Science, Technology and Engineering, 6(2), 68–79. https://doi.org/10.36079/lamintang.ijeste-0602.594
  31. Okafor, W. O., Edeagu, S. O., Chijindu, V. C., Iloanusi, O. N., & Eze, V. H. U. (2023). A Comprehensive Review on Smart Grid Ecosystem. IDOSR Journal of Applied Science, 8(1), 25–63.
  32. Esen, M., & Yuksel, T. (2013). Experimental evaluation of using various renewable energy sources for heating a greenhouse. Energy and Buildings65, 340-351.
  33. Aye, L., Fuller, R. J., & Canal, A. (2010). Evaluation of a heat pump system for greenhouse heating. International Journal of Thermal Sciences49(1), 202-208.
  34. Eze, V. H. U., Eze, M. C., Ogbonna, C. C., Ugwu, S. A., Emeka, K., & Onyeke, C. A. (2021). Comprehensive Review of Recent Electric Vehicle Charging Stations. Global Journal of Scientific and Research Publications, 1(12), 16–23.
  35. Eze, V. H. U., Onyia, M. O., Odo, J. I., & Ugwu, S. A. (2017). DEVELOPMENT OF ADUINO BASED SOFTWARE FOR WATER PUMPING IRRIGATION SYSTEM. International Journal of Scientific & Engineering Research, 8(8), 1384–1399.
  36. Tadj, N., Bartzanas, T., Fidaros, D., Draoui, B., & Kittas, C. (2010). Influence of heating system on greenhouse microclimate distribution. Transactions of the ASABE53(1), 225-238.
  37. Ghosal, M. K., Tiwari, G. N., Srivastava, N. S. L., & Sodha, M. S. (2004). Thermal modelling and experimental validation of ground temperature distribution in greenhouse. International Journal of Energy Research28(1), 45-63.
  38. Adinberg, R., Zvegilsky, D., & Epstein, M. (2010). Heat transfer efficient thermal energy storage for steam generation. Energy Conversion and Management51(1), 9-15.
  39. Laing, D., Bahl, C., Bauer, T., Lehmann, D., & Steinmann, W. D. (2011). Thermal energy storage for direct steam generation. Solar Energy85(4), 627-633.
  40. Nordell, B. (2013). Underground thermal energy storage (UTES). In International Conference on Energy Storage: 16/05/2012-18/05/2012.
  41. Kallesøe, A. J., Vangkilde-Pedersen, T., & Guglielmetti, L. (2020). HEATSTORE–Underground Thermal Energy Storage (UTES)-State of the Art, Example Cases and Lessons Learned. In Proceedings World Geothermal Congress(p. 1).
  42. Gluyas, J. G., Adams, C. A., & Wilson, I. A. G. (2020). The theoretical potential for large-scale underground thermal energy storage (UTES) within the UK. Energy Reports6, 229-237.
  43. Midttømme, K., Hauge, A., Grini, R. S., Stene, J., & Skarphagen, H. (2009). Underground thermal energy storage (UTES) with heat pumps in Norway. Proceedings of Effstock, 15-17.
  44. Enerst, E., Eze, V. H. U., Ibrahim, M. J., & Bwire, I. (2023). Automated Hybrid Smart Door Control System. IAA Journal of Scientific Research, 10(1), 36–48.
  45. Enerst, E., Eze, V. H. U., Musiimenta, I., & Wantimba, J. (2023). Design and Implementation of a Smart Surveillance Secuirty System. IDOSR Journal of Science and Technology, 9(1), 98–106. https://doi.org/10.5120/cae2020652855
  46. Enerst, E., Eze, V. H. U., Okot, J., Wantimba, J., & Ugwu, C. N. (2023). DESIGN AND IMPLEMENTATION OF FIRE PREVENTION AND CONTROL SYSTEM USING ATMEGA328P MICROCONTROLLER. International Journal of Innovative and Applied Research, 11(06), 25–34. https://doi.org/10.58538/IJIAR/2030
  47. Enerst, E., Eze, V. H. U., & Wantimba, J. (2023). Design and Implementation of an Improved Automatic DC Motor Speed Control Systems Using Microcontroller. IDOSR Journal of Science and Technology, 9(1), 107–119.
  48. Bergmo, P. E. S., Grimstad, A. A., & Lindeberg, E. (2011). Simultaneous CO2 injection and water production to optimise aquifer storage capacity. International Journal of Greenhouse Gas Control5(3), 555-564.
  49. Loáiciga, H. A. (2008). Aquifer storage capacity and maximum annual yield from long-term aquifer fluxes. Hydrogeology Journal16, 399-403.
  50. Reuss, M. (2015). The use of borehole thermal energy storage (BTES) systems. In Advances in thermal energy storage systems(pp. 117-147). Woodhead Publishing.
  51. Skarphagen, H., Banks, D., Frengstad, B. S., & Gether, H. (2019). Design considerations for borehole thermal energy storage (BTES): A review with emphasis on convective heat transfer. Geofluids2019.
  52. Giordano, N., Comina, C., Mandrone, G., & Cagni, A. (2016). Borehole thermal energy storage (BTES). First results from the injection phase of a living lab in Torino (NW Italy). Renewable Energy86, 993-1008.
  53. Knobloch, K., Ulrich, T., Bahl, C., & Engelbrecht, K. (2022). Degradation of a rock bed thermal energy storage system. Applied Thermal Engineering214, 118823.
  54. Meier, A., Winkler, C., & Wuillemin, D. (1991). Experiment for modelling high temperature rock bed storage. Solar energy materials24(1-4), 255-264.
  55. KIM, J. S. (2005). High-temperature Thermal Energy Storage (HTTES) for Solar Power System. In Proceedings of the 6^< th> KSME-JSME Thermal and Fluids Engineering Conference 2005, Jeju, Korea, March 20-23.
  56. Ogbonna, C. C., Eze, V. H. U., Ikechuwu, E. S., Okafor, O., Anichebe, O. C., & Oparaku, O. U. (2023). A Comprehensive Review of Artificial Neural Network Techniques Used for Smart Meter-Embedded forecasting System. IDOSR JOURNAL OF APPLIED SCIENCES, 8(1), 13–24.
  57. Eissenberg, D. M., & Hoffman, H. W. (1979). Low-Temperature Thermal Energy Storage Program. Progress report, October 1978–March 1979(No. ORNL/TM-6936). Oak Ridge National Lab., TN (USA).
  58. Congedo, P. M., Baglivo, C., & Carrieri, L. (2020). Hypothesis of thermal and mechanical energy storage with unconventional methods. Energy Conversion and Management218, 113014.
  59. Afram, A., & Janabi-Sharifi, F. (2014). Review of modeling methods for HVAC systems. Applied thermal engineering67(1-2), 507-519.
  60. Trčka, M., & Hensen, J. L. (2010). Overview of HVAC system simulation.Automation in construction19(2), 93-99.
  61. Eze, V. H. U., Olisa, S. C., Eze, M. C., Ibokette, B. O., Ugwu, S. A., Eze, H. U., Olisa, S. C., Eze, M. C., Ibokette, B. O., & Ugwu, S. A. (2016). Effect of Input Current and the Receiver-Transmitter Distance on the Voltage Detected By Infrared Receiver. International Journal of Scientific & Engineering Research, 7(10), 642–645.
  62. Brunton, G. D., Eissenberg, D. M., & Kedl, R. J. (1979). Low-Temperature Thermal Energy Storage Program. Annual progress report, October 1977–September 1978(No. ORNL/TM-6701). Oak Ridge National Lab., TN (USA).

CITE AS: Val Hyginus Udoka Eze, Oonyu Robert, Nakitto Immaculate Sarah, John S. Tamball, Oparaocha Favour Uzoma and Okafor O. Wisdom (2024). Transformative Potential of Thermal Storage Applications in Advancing Energy Efficiency and Sustainability. IDOSR JOURNAL OF APPLIED SCIENCES 9(1)51-64. https://doi.org/10.59298/IDOSRJAS/2024/1.8.9.295

DOWNLOAD PDF